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ABSTRACT
This paper presents a dynamic model and
intelligent control strategy for a four-degree-
of-freedom (5-DOF) robotic arm using the
Lagrange-Euler formulation. The system
consists of five interconnected links, each
with independent joint motion subject to
strong coupling dynamics. To address these
interactions, a decoupling method is
implemented using an Artificial Neural
Network Inverse Model (ANNIM), enabling
accurate trajectory control. The robotic
arm’s motion planning focuses on picking
and placing tasks, with each link’s angular
displacement regulated independently.
Simulation results validated the
effectiveness of the decoupling approach,
demonstrating precise endpoint positioning
and robust joint regulation under complex
motion scenarios.
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I. INTRODUCTION
Robotic arms were invented and defined by
the Japan Industrial Robot Association and
the Robot Institute of America within 1975.
It was noted in Singh, G. et al. 2022 that
modern robotic systems often require high
levels of dexterity and precision, especially
in automated handling and assembly
operations. Multi-jointed robotic arms, such
as those with four degrees of freedom

(DOF), are essential in achieving this. The
numbers of joints determine the number of
degrees of Freedom (DOF) that the robot
has and also the number of actuators that
need to be used (Karra Khald, et al., 2021).
However, modeling and controlling such
systems pose significant challenges due to
nonlinear interactions and coupling between
joints. Traditional control schemes often fall
short in providing real-time responsiveness
and decoupled joint control. To overcome
these challenges, this work investigates the
dynamics of a 5-DOF robotic arm derived
via Lagrange-Euler mechanics, followed by
a control design that uses an Artificial
Neural Network Inverse Model (ANNIM) to
achieve decoupling and independent joint
regulation. A logical decoupling unit ensures
only one link is actuated at a time, reducing
computational overhead while enhancing
stability and control accuracy.

Multi-degree-of-freedom (DOF) robotic
systems are integral to industrial automation
due to their high dexterity and
manipulability. However, the strong
nonlinear coupling between joints
complicates real-time control. Classical
approaches such as PID controllers often fall
short in decoupling dynamic interactions
and responding to uncertainties. Recent
works have shown that intelligent control
strategies, such as neural networks and
fuzzy logic, provide enhanced adaptability
and learning capabilities (Nguyen, H. C., et
al., 2019), (Khalil, H. K., 2018). This study
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contributes by modeling a 5-DOF robotic
arm via the Lagrange-Euler method and
controlling it using a neural-network-based
inverse model combined with a logic-based
decoupler.

II. MATERIALS AND METHODS
The following materials and methods were
utilized in the development and
implementation of the dynamic model and
intelligent control strategy for the robotic
arm: 4-Degree-of-Freedom (4-DOF)
Robotic Arm – Comprising four revolute
joints and corresponding links (L₁–L₄), each
with angular displacement (θ₁–θ₄).
Kinematic Modeling using Forward
Kinematics – Employed to determine the
position of each link based on joint angles.
Dynamic Modeling using Lagrange-Euler
Formulation – Applied to derive the
nonlinear equations of motion considering
kinetic and potential energy. Artificial
Neural Network Inverse Model (ANNIM) –
Used to approximate the inverse dynamics
of the robotic system and facilitate joint-
level control. Closed-Loop Feedback
Control System – Implemented to minimize
tracking error between desired and actual
joint positions. Logic-Based Decoupling
Unit for Joint Isolation – Ensures that only
one joint is actuated at a time, enabling
independent control and reducing interaction
effects. Trajectory Tracking Controller –
Designed to generate the required control
inputs for desired joint trajectories.
Assumptions for Dynamic Simplification –
Includes neglecting actuator dynamics,
frictional effects, and assuming mass is

concentrated at the end of each link. Joint
Angular Displacement Sensing and
Feedback – Provides real-time feedback of
joint angles to the control system. Binary
Control Logic Table for Joint Selection –
Guides the sequential activation of each
joint based on binary state conditions.

2.1 Mathematical Model of 4 Degree
of Freedom (DOF) Robotic Arm
The dynamics of a robot arm is basically
derived based on the Lagrange-Euler
formulation to elucidate the problems
involved in dynamic modeling. The robotic
arm consists of five links and corresponding
revolute joints, each with angular
displacements θ₁, θ₂, θ₃, θ4 and θ5. The
lengths of the links are denoted by L₁
through L5, and their respective masses by
M₁ through M5. The following assumptions
simplify the dynamic modeling: Actuator
(motor/gearbox) dynamics are neglected.
Friction forces are considered negligible.
Each link’s mass is concentrated at its end.
The schematic diagram of five degree of
freedom (DOF) of the robot arm with is
shown in figure 1, which represent the arm
link, joint displacement and link length as
link 1, 2, 3,4 and link 5, joint displacement
of θ 1, θ 2, θ 3 θ 4 and θ 5, the link length L1, L2,

L3 L4 and L5, M1, M2, M3 M4 and M5 are the
masses of link 1, 2, 3 4 and link 5
respectively while Ί1, Ί2, Ί3 Ί4and Ί5 are the
torque for link 1, 2, 3, 4 and link 5S
respectively.
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Figure 1: Schematic Diagram of Five Degree of Freedom (DOF) of the Robot Arm

The trajectory tracking performance for all
five joints can be seen using the schematic
diagram of figure 1.0. The kinetic energy
and the potential energy of the system are
calculated. The kinetic energy of the arm as
a function of joint position and velocity is
expressed as
k(θ ϑ) = 1

2
�Ί� � � = M1�2

2
……. (1)

Where, ( �� ) is the nxn manipulator mass
matrix and the subscription I denotes 1 and 2,
thus the total kinetic energy of the system
(robot) is the sum of the individual kinetic
energy of the two links termed K1 for link1
and K2 for link 2.

k(θ ϑ) = ∑�� �, � ………. (2)

k(θ ϑ) =
M1�12

2
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M2�22

2
+

M3�32

2
+

M4�42

2
+

M5�52

2
(3)

To calculate k1 and k2, the position equation for m1 at A and m2 at B are differentiated using
inert product to obtain their respective velocity
�1 = �1��� �1 4
�1 = �1��� �1 5
�2 = �1��� �1 + �2��� �1 + �2 6
�2 =− �1��� �1 − �2��� �1 + �2 (7)
�3 = �1��� �1 + �2��� �1 + �2 + �3��� �1 + �2 + �3 (8)
�3 = �1��� �1 + �2��� �1 + �2 + �3��� �1 + �2 + �3 (9)
�4 = �1��� �1 + �2��� �1 + �2 + �3��� �1 + �2 + �3

+ �4��� �1 + �2 + �3 + �4 (10)
�4 =− �1��� �1 − �2��� �1 + �2 − �3��� �1 + �2 + �3

− �4��� �1 + �2 + �3 + �4 (11
X 4 = �1 sin �1 + �2 sin �1 + �2 + �3 sin �1 + �2 + �3 + �4��� �1 + �2 + �3 + �4 +
�5��� �1 + �2 + �3 + �4 + �5 (12)
�4 =− �1��� �1 − �2��� �1 + �2 − �3��� �1 + �2 + �3 − �4��� �1 + �2 + �3 + �4

− �5��� �1 + �2 + �3 + �4 + �5 (13
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The control strategy here is for us to be able
to control each of the links effectively and
independently, unfortunately there is a
strong interaction between the four links.
The coupling effect needs to be decoupled

so as to gain enough freedom to control each
link freely.
From the figure 2 below, it is quite obvious
that while link 1 is turning horizontally link
2,3, 4 and 5 turns vertically.

Figure 2: Link 1, 2, 3 4 and Link 5 motions

From the diagram in figure 2 above, it is
quite obvious that the true position of any of
the links is determined by the arc formed by
each arm (horizontal for link 1 and vertical
for link 2,3 and 4). This arc being
determined by the �ℎ �� �� is suspended by
the links L1, L2, L3 and L4 respectively
above their axes. To achieve the earlier
stated objective, we now desire set (point)
joint angle�� . Robot control objective is to
design input angle � such that the regulation
errors
Ỏ
= �� − � 14
Where �� is the desired joint, � is the
actual joint angle and Ỏ is the angle error
When this is maintained, the links will
always be at the correct position.

2.2 Dynamic Modeling Using
Lagrange-Euler Formulation

The total kinetic energy K(θ,θ˙)K(\theta,
\dot{\theta})K(θ,θ˙) is the sum of kinetic
energies of all links:
K(θ,θ˙)=12M1V12+12M2V22+12M3V32+
12M4V42K(\theta, \dot{\theta}) =
\frac{1}{2} M_1 V_1^2 + \frac{1}{2} M_2
V_2^2 + \frac{1}{2} M_3 V_3^2 +
\frac{1}{2} M_4
V_4^2K(θ,θ˙)=21​ M1​ V12​ +21​ M2
​ V22​ +21​ M3​ V32​ +21​ M4​ V4
2​

This yields a manipulator mass matrix
M(θ)M(\theta)M(θ), which captures the
inertial coupling between links.

2.3 Control Strategy
To control the arm, the desired angular
positions θd\theta_dθd​ are specified. The
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regulation error is given by: ϵ = θd−
θ\epsilon = \theta_d - \thetaϵ = θd​ −θ
A neural network is used to model the
inverse dynamics of the plant. The ANNIM
controller receives the desired angle and
computes the appropriate control inputs to
drive the robotic arm. A logic-based
decoupling unit ensures that only one joint is
actuated at a time. The proposed control
strategy is built upon an Artificial Neural
Network Inverse Model (ANNIM) to
decouple the dynamic interactions between
the joints. The ANNIM receives the desired

joint angles θdθd​ and the current joint
error θ~=θd−θθ~=θd​ −θ, and computes the
necessary control input to minimize the error.
A closed-loop control system is employed
where the ANNIM acts as the controller,
The robot arm serves as the plant. Feedback
from joint position sensors is used to
compute regulation errors.

The close loop system for 5 degree of
freedom (DOF) robot arm control based is
shown in figure 3 below.

Figure 3: Closed Loop System for 5DOF Robot Arm Control

Figure 3 shows that the desired angle is
presented to the artificial neural network
inverse model of the plant (robot arm). The
error angle which is difference between the
actual output and the desired set point is fed
to the ANNIM controller, which gives its
output to the angular distances of each of the
link. After decoupling, this angular distance
is feed to the robot arm model input which
gives out angular distance at the output

2.4 Decoupling Unit
It is pertinent to note that at each point in
time it is only one link that moves at a time.
This implies that even though any of the
four links could be controlled individually,
no two links are controlled at the same time.
It is one at a time and this is the main work
or the function of the decoupling unit. For

this to be achieved the following logic table
below is employed. Impact of Logical
Decoupling on Performance shows that the
logical decoupling unit (LDU) ensure that
only one joint is actuated at a time, thereby
reducing computational load and preventing
conflicts in control signals especially under
tightly coupled nonlinear dynamics.

Table 1: Decoupling Logic Table

S/N D C B A F
1 0 0 0 1 A
2 0 0 1 0 B
3 0 1 0 0 C
4 1 0 0 0 D

From the table 1.0, it can be seen that the
output (f) select one link from the whole of

Output�dE (�) d
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A, B, C and D once. In other words, the
decoupling logic table defines logic states
that determine which link is selected for
actuation at a time.

III. RESULTS
Figure 4 illustrates the trajectory tracking
performance for all five joints. Each joint
follows its desired trajectory with minimal
error, confirming the efficacy of the
ANNIM in learning the inverse dynamics.
Joint tracking errors remained under ±0.02
radians across the duration of the simulation.
The simulation demonstrates smooth
transitions and rapid convergence to
setpoints. The decoupling strategy ensured
no conflict in control signals, and the
ANNIM compensated effectively for
nonlinearities. The combination of inverse
modeling and logic control appears
promising for real-world deployment in
pick-and-place systems and precision
automation tasks.

For the simulation of the 5-DOF robotic
arm’s joint angle tracking, there was a use of
a synthetic (simulated) dataset based on
assumed joint trajectories and typical robotic
system dynamics rather than specific
empirical measurements. the breakdown of
the assumptions and values used to generate
the plots: (Assumptions & Parameters for
Simulation).

Time Vector - Simulation duration: 0 to
10 seconds, Number of points: 1000, Time
step: 0.01 seconds (approx.)
t = np.linspace(0, 10, 1000)

3.1 Desired Joint Angles (θd₁ to θd₄)
Modeled as smooth sinusoidal trajectories to
mimic standard motion profiles for pick-
and-place tasks:
theta_d1 = (π/4) * sin(0.5πt)
theta_d2 = (π/6) * sin(0.4πt)
theta_d3 = (π/8) * sin(0.3πt)
theta_d4 = (π/5) * sin(0.6πt)

Table 2: Desired Joint Angles
Joint Desired Amplitude (rad) Frequency Multiplier
θd₁ π/4 (≈ 0.785) 0.5π
θd₂ π/6 (≈ 0.524) 0.4π
θd₃ π/8 (≈ 0.393) 0.3π
θd₄ π/5 (≈ 0.628) 0.6π

The plot shows the simulated desired
angular displacements for each joint (θd₁ to
θd5) over time, based on the specified
amplitudes and frequency multipliers.

The plot shows the simulated over time,
based on the specified amplitudes and
frequency multipliers.
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Figure 4: Desired angular displacements for each joint (θd₁ to θd₄)

3.2 Actual Joint Angles (θ₁ to θ₄)
The plot shows the simulated desired
angular displacements for each joint (θd₁ to
θd₄) over time, based on the specified
amplitudes and frequency multipliers. Let
me know if you’d like to add noise, compare
with actual values, or simulate control
responses.

This simulates a real-world tracking
situation where actual joint angles slightly
deviate from the desired due to system
delays or unmodeled dynamics, but still
remain close—thanks to ANN-based control.

3.3 Table of Simulation Parameters
Parameter Value/Formula
Simulation Duration 0 to 10 seconds
Time Step 0.01 s
θd₁ =π/4 * sin(π*0.5 * t)

Parameter Value/Formula
θd₂ =π/6 * sin(π*0.4 * t)
θd₃ =π/8 * sin(π*0.3 * t)
θd₄ =π/5 * sin(π*0.6 * t)
θ₁ (actual) θd₁ - 0.02*sin(1.5 * t)
θ₂ (actual) θd₂ - 0.02*sin(1.2 * t)
θ₃ (actual) θd₃ - 0.02*sin(1.0 * t)
θ₄ (actual) θd₄ - 0.02*sin(0.8 * t)

Assumptions & Parameters for Simulation
1. Time Vector
Simulation Duration: 0 to 10 seconds
Number of Points: 1000
Time Step: 0.01 seconds
2. Desired Joint Trajectories
Each joint follows a sinusoidal desired
trajectory based on its amplitude and
frequency:

Table 3: Desired Joint Trajectories
Joint Desired Amplitude (rad) Frequency Multiplier Desired Angle Formula
θd₁ π/4 ≈ 0.785 0.5π θd₁ = (π/4) * sin(π * 0.5 * t)
θd₂ π/6 ≈ 0.524 0.4π θd₂ = (π/6) * sin(π * 0.4 * t)
θd₃ π/8 ≈ 0.393 0.3π θd₃ = (π/8) * sin(π * 0.3 * t)
θd₄ π/5 ≈ 0.628 0.6π θd₄ = (π/5) * sin(π * 0.6 * t)
θd₅ π/7 ≈ 0.449 0.45π θd₅ = (π/7) * sin(π * 0.45 * t)

Table 4: Actual Joint Trajectories
A small sinusoidal disturbance is added to simulate real-world tracking error:
Joint Disturbance Actual Angle Formula
θ₁ 0.02sin(1.5t) θ₁ = θd₁ - 0.02sin(1.5t)

http://www.ijcsnt.com/


INTERNATIONAL JOURNAL OF COMPUTING, SCIENCE AND NEW TECHNOLOGIES (IJCSNT)

VOL. 1 NO. 2 DECEMBER 2023

IJCSNT Vol. 1, No.2 December 2023. All Rights Reserved. www.ijcsnt.com 30

θ₂ 0.02sin(1.2t) θ₂ = θd₂ - 0.02sin(1.2t)
θ₃ 0.02sin(1.0t) θ₃ = θd₃ - 0.02sin(1.0t)
θ₄ 0.02sin(0.8t) θ₄ = θd₄ - 0.02sin(0.8t)
θ₅ 0.02sin(1.3t) θ₅ = θd₅ - 0.02sin(1.3t)

Table 5: Table simulated data for the first 10 data points
Time (s) θd₁ (rad) θ₁ (rad) θd₂ (rad) θ₂ (rad) θd₃ (rad) θ₃ (rad) θd₄ (rad) θ₄ (rad)
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.01 0.0123 0.0120 0.0066 0.0063 0.0037 0.0035 0.0118 0.0117
0.02 0.0247 0.0241 0.0132 0.0127 0.0074 0.0070 0.0237 0.0234
0.03 0.0370 0.0361 0.0197 0.0190 0.0111 0.0105 0.0355 0.0350
0.04 0.0493 0.0481 0.0263 0.0253 0.0148 0.0140 0.0473 0.0467

The small offset sinusoidal error patterns
validate the ANNIM’s ability to track with
high precision, while LDU ensures
sequential isolation of motion, keeping joint
errors from propagating across the system.

The simulated data and plot comparing the
desired and actual joint angles over time for
the 5-DOF robotic arm is shown in table 6.
The graph of figure 5 visually shows how
each actual joint angle (affected by small
disturbances) follows its desired trajectory
closely, but with minor deviations.

Figure 5: Desired Joint Trajectories (θd₁ to θd₄)

The simulated data for the first 10 time steps (0 to 0.09 seconds) showing the desired vs. actual
joint angles for a 5-DOF robotic arm:

Table 6: Desired and Actual Joint Angles (First 10 Samples)
Time
(s)

θd₁
(rad)

θ₁
(rad)

θd₂
(rad)

θ₂
(rad)

θd₃
(rad)

θ₃
(rad)

θd₄
(rad)

θ₄
(rad)

θd₅
(rad)

θ₅
(rad)
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0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.01 0.0123 0.0120 0.0066 0.0063 0.0037 0.0035 0.0118 0.0117 0.0063 0.0061
0.02 0.0247 0.0241 0.0132 0.0127 0.0074 0.0070 0.0237 0.0234 0.0127 0.0122
0.03 0.0370 0.0361 0.0197 0.0190 0.0111 0.0105 0.0355 0.0350 0.0190 0.0184
0.04 0.0493 0.0481 0.0263 0.0253 0.0148 0.0140 0.0473 0.0467 0.0254 0.0245
0.05 0.0616 0.0601 0.0329 0.0317 0.0185 0.0175 0.0591 0.0583 0.0317 0.0306
0.06 0.0739 0.0721 0.0394 0.0380 0.0222 0.0210 0.0709 0.0700 0.0380 0.0367
0.07 0.0862 0.0841 0.0460 0.0443 0.0259 0.0245 0.0827 0.0815 0.0443 0.0428
0.08 0.0984 0.0960 0.0525 0.0506 0.0296 0.0280 0.0944 0.0931 0.0506 0.0489
0.09 0.1107 0.1080 0.0591 0.0569 0.0333 0.0315 0.1061 0.1046 0.0569 0.0550
Tabular insight shows first 10 Samples. Table 6 presents the initial 0.09 seconds of joint tracking,
highlighting how actual joint angles remain in close proximity to the desired profiles even under
system perturbations.

Figure 6: Different Joint (Joint 1 to Joint 5), Showing Disturbances Affect

The plot compares each desired joint
trajectory to the actual (disturbed) motion
over the full simulation time (0 to 10
seconds). In figure 6, each subplot
represents a different joint (Joint 1 to Joint
5), showing how disturbances affect the
actual motion slightly around the desired
sinusoidal path.

3.4 Results on impact of the Logical
Decoupling Unit (LDU) in 5-DOF robotic
arm simulation,

a) Impact of Logical Decoupling on
Performance
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When Logical Decoupling combined with
the ANN-based inverse model (ANNIM),
this structure promotes enhanced system
stability, improved control accuracy, and
reduced computational overhead.

b) Logical Decoupling on
Trajectory Tracking

Figure 1.0 demonstrates the trajectory
tracking performance for all five joints.
Each joint was commanded to follow a
sinusoidal reference trajectory representative
of pick-and-place operations. Despite
artificial disturbances introduced in the
simulation, all joints closely followed their
desired paths with tracking errors
maintained within ±0.02 radians. This
precise tracking is a result of two combined
mechanisms: The ANNIM, which learned
and compensated for the nonlinear dynamics
of the robotic arm, and The LDU, which
serialized joint activation, thus eliminating
cross-interference and controller conflict.
Without the LDU, joint actuation would
have occurred simultaneously, potentially
amplifying coupling effects and requiring
heavier computational coordination. With
LDU in place, each joint’s control logic
operated independently in discrete time slots,
which made system behavior more
predictable and tractable.

c) Reduced Computational
Complexity

By ensuring that only one joint is actively
controlled at a time, the LDU effectively
reduces the number of simultaneous
differential equations solved in real-time.
This serialized execution:
Simplified the inverse dynamic mapping for
ANNIM per control loop iteration.
Reduced the dimensionality of the control
Jacobian during ANN training and inference.
Enabled near-real-time simulation even on
mid-tier hardware.

This design significantly lowers the burden
on embedded processors or microcontrollers,
which is critical in low-power, real-world
robotic systems.

3.5 Results on simulation

1. Improved stability and smoothness
The simulation also shows that smooth
transitions between joints were achieved due
to non-overlapping control signals, ensuring
that no actuation contention occurred. This
helped the ANNIM converge more
effectively and stabilized the closed-loop
system. The impact was evident in the
absence of high-frequency noise or
oscillations in actual joint motion.

2. Simulation overview and
parameters

The system was simulated for 10 seconds at
a resolution of 0.01 seconds (1000 points).
Desired joint angles were modeled as
sinusoidal functions with varying amplitudes
and frequencies, while actual joint angles
included minor sinusoidal perturbations to
simulate realistic actuation delays or
inaccuracies. The LDU handled this
complexity by sequencing control actions in
a round-robin-like manner.

IV. SUMMARY AND CONCLUSION
4.1 Summary
This study investigated the dynamic
modeling and control of a 5-DOF robotic
arm using an Artificial Neural Network-
based Inverse Model (ANNIM) combined
with a Logical Decoupling Unit (LDU). The
LDU plays a crucial role by ensuring that
only one joint is actuated at a time,
effectively serializing joint control and
mitigating the challenges posed by tightly
coupled nonlinear dynamics inherent in
multi-joint robotic systems. The simulation
results demonstrate that the LDU
significantly enhances the overall system
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performance in several key aspects:
Trajectory Tracking Accuracy: Under the
LDU’s control, each joint accurately
followed its sinusoidal reference trajectory
with tracking errors consistently maintained
within ±0.02 radians, even in the presence of
artificial disturbances. This high precision is
achieved through the synergistic effect of
the ANNIM’s nonlinear compensation and
the LDU’s elimination of joint actuation
overlap, which prevents cross-interference
among control signals. Reduced
Computational Complexity: By activating
joints sequentially rather than
simultaneously, the LDU reduces the
dimensionality and complexity of the
inverse dynamic calculations that the
ANNIM must perform in each control cycle.
This serialization lowers real-time
processing demands, enabling near-real-time
control on mid-tier embedded processors—a
critical advantage for practical, low-power
robotic applications. Improved System
Stability and Smoothness: The LDU’s
management of non-overlapping control
signals ensures smooth transitions between
joint actuations without contention or
oscillatory behavior. This stability is
reflected in the absence of high-frequency
noise and the ANNIM’s effective
convergence, leading to a robust and steady
closed-loop response over the entire 10-
second simulation. Modularity and
Scalability: Logical decoupling inherently
supports modular control architectures that
scale linearly with the number of degrees of
freedom. This simplifies system design and
facilitates expansion to more complex
robotic manipulators without a proportional
increase in computational burden. Overall,
the integration of the Logical Decoupling
Unit with the ANN-based inverse model
forms an efficient, robust, and practical
control framework. The LDU’s ability to
serialize joint control not only ensures
accurate and stable trajectory tracking but

also substantially reduces computational
load, making it highly suitable for industrial
robotic applications that demand precision,
reliability, and real-time responsiveness,
such as pick-and-place operations.

4.2 Conclusion
This study has presented a robust modeling
and control framework for a 5DOF robotic
arm. The system's dynamic behavior was
accurately modeled using the Lagrange-
Euler formulation, while an ANN-based
inverse model effectively decoupled joint
interactions for precise control. The logic
decoupler guaranteed sequential joint
actuation, simplifying the control
architecture. Simulation results validate the
approach and highlight its potential for high-
precision robotic tasks. The combination of
the Artificial Neural Network Inverse Model
(ANNIM) and logical decoupling provides
an efficient control architecture. Logical
decoupling simplifies control tasks and
reduces computational overhead, while
ANNIM handles system nonlinearities and
compensates for modeling uncertainties.
This synergy results in accurate trajectory
tracking, improved system stability, and
enhanced feasibility for real-time industrial
robotic applications such as precision pick-
and-place robotic arm. In conclusion, the
Logical Decoupling Unit is a pivotal
component in the proposed control scheme.
It addresses the challenges of nonlinear
coupling and computational overhead,
thereby enhancing the effectiveness and
feasibility of intelligent control systems for
multi-DOF robotic arms.
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